3 years ago

Chiral Optical Properties of Tapered Semiconductor Nanoscrolls

Chiral Optical Properties of Tapered Semiconductor Nanoscrolls
Ivan D. Rukhlenko, Anatoly V. Fedorov, Mikhail Yu. Leonov, Nikita V. Tepliakov, Alexander V. Baranov, Ilia A. Vovk, Anvar S. Baimuratov
Large surface-to-volume ratio, one-dimensional quantum confinement, and strong optical activity make chiral nanoscrolls ideal for the detection and sensing of small chiral molecules. Here, we present a simple physical model of chiroptical phenomena in multilayered tapered semiconductor nanoscrolls. Our model is based on a linear transformation of coordinates, which converts nanoscrolls into flat but topologically distorted nanoplatelets whose optical properties can then be treated analytically. As an illustrative application example, we analyze absorption and circular dichroism spectra of CdSe nanoscrolls using an eight-band model of CdSe. We show that the optical activity of the nanoscrolls originates from the chiral distortion of their crystal lattice and determine selection rules for the optically active interband transitions. The results of our study may prove useful for the modeling and design of semiconductor nanoscrolls and nanoscroll-based materials.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04032

DOI: 10.1021/acsnano.7b04032

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.