4 years ago

Decomposition of the Experimental Raman and Infrared Spectra of Acidic Water into Proton, Special Pair, and Counterion Contributions

Decomposition of the Experimental Raman and Infrared Spectra of Acidic Water into Proton, Special Pair, and Counterion Contributions
Dor Ben-Amotz, Ali A. Hassanali, Poul B. Petersen, Steven A. Corcelli, Clyde A. Daly, Shannon R. Pattenaude, Yuchen Sun, Louis M. Streacker
Textbooks describe excess protons in liquid water as hydronium (H3O+) ions, although their true structure remains lively debated. To address this question, we have combined Raman and infrared (IR) multivariate curve resolution spectroscopy with ab initio molecular dynamics and anharmonic vibrational spectroscopic calculations. Our results are used to resolve, for the first time, the vibrational spectra of hydrated protons and counterions and reveal that there is little ion-pairing below 2 M. Moreover, we find that isolated excess protons are strongly IR active and nearly Raman inactive (with vibrational frequencies of ∼1500 ± 500 cm–1), while flanking water OH vibrations are both IR and Raman active (with higher frequencies of ∼2500 ± 500 cm–1). The emerging picture is consistent with Georg Zundel’s seminal work, as well as recent ultrafast dynamics studies, leading to the conclusion that protons in liquid water are primarily hydrated by two flanking water molecules, with a broad range of proton hydrogen bond lengths and asymmetries.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02435

DOI: 10.1021/acs.jpclett.7b02435

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.