3 years ago

Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells

Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells
Moritz Nazarenus, Wolfgang J. Parak, Raimo Hartmann, Yan Yan, Frank Caruso, Jiwei Cui, Katelyn T. Gause, Mikhail V. Zyuzin
The presence of a protein corona on various synthetic nanomaterials has been shown to strongly influence how they interact with cells. However, it is unclear if the protein corona also exists on protein particles, and if so, its role in particle–cell interactions. In this study, pure human serum albumin (HSA) particles were fabricated via mesoporous silica particle templating. Our data reveal that various serum proteins adsorbed on the particles, when exposed to human blood plasma, forming a corona. In human umbilical vein endothelial cells (HUVECs), the corona was shown to decrease particle binding to the cell membrane, increase the residence time of particles in early endosomes, and reduce the amount of internalized particles within the first hours of exposure to particles. These findings reveal important information regarding the mechanisms used by vascular endothelial cells to internalize protein-based particulate materials exposed to blood plasma. The ability to control the cellular recognition of these organic particles is expected to aid the advancement of HSA-based materials for intravenous drug delivery.

Publisher URL: http://dx.doi.org/10.1021/acs.bioconjchem.7b00231

DOI: 10.1021/acs.bioconjchem.7b00231

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.