5 years ago

Evaluation of blood adsorption onto dialysis membranes by time-of-flight secondary ion mass spectrometry and near-field infrared microscopy

Kiyoshi Abe, Takayuki Yamagishi, Takashi Sunohara, Hideo Iwai, Satoka Aoyagi, Satoru Yamaguchi


Blood adsorption onto the inside surface of hollow fiber dialysis membranes was investigated by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and near-field infrared microscopy (NFIR) in order to evaluate the biocompatibility and permeability of dialysis membranes. TOF-SIMS is useful for the imaging of particular molecules with a high spatial resolution of approximately 100 nm. In contrast, infrared spectra provide quantitative information and NFIR enables analysis with a high spatial resolution of less than 1 μm, which is close to the resolution of TOF-SIMS. A comparison was made of one of the most widely used dialysis membranes made of polysulfone (PSf), that has an asymmetric and inhomogeneous pore structure, and a newly developed asymmetric cellulose triacetate (ATA) membrane that also has an asymmetric pore structure, even though the conventional cellulose triacetate membrane has a symmetric and homogeneous pore structure. As a result, it was demonstrated that blood adsorption on the inside surface of the ATA membrane is more reduced than that on the PSf membrane.

Graphical abstract

Analysis of blood adsorption on inside surface of hollow fiber membrane

Publisher URL: https://link.springer.com/article/10.1007/s00216-017-0578-1

DOI: 10.1007/s00216-017-0578-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.