Functionalization of MgZnO nanorod films and characterization by FTIR microscopic imaging
Abstract
Metal organic chemical vapor deposition grown films consisting of MgxZn1-xO (4% < x < 5%) nanorod arrays (MgZnOnano) were functionalized with 11-azidoundecanoic acid (1). The MgZnOnano was used instead of pure ZnO to take advantage of the etching resistance of the MgZnOnano during the binding and subsequent sensing device fabrication processes of sensor devices, while the low Mg composition level ensures that selected ZnO properties useful for sensors development, such as piezoelectricity, are retained. Compound 1 was bound to the MgZnOnano surface through the carboxylic acid group, leaving the azido group available for click chemistry and as a convenient infrared spectroscopy (IR) probe. The progress of the functionalization with 1 was characterized by FTIR microscopic imaging as a function of binding time, solvents employed, and MgZnOnano morphology. Binding of 1 was most stable in solutions of 3-methoxypropionitrile (MPN), a non-protic polar solvent. This occurred first in μm-scale islands, then expanded to form a rather uniform layer after 22 h. Binding in alcohols resulted in less homogenous coverage, but the 1/MgZnOnano films prepared from MPN were stable upon treatment with alcohols at room temperature. The binding behavior was significantly dependent on the surface morphology of MgZnOnano.
Publisher URL: https://link.springer.com/article/10.1007/s00216-017-0577-2
DOI: 10.1007/s00216-017-0577-2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.