4 years ago

Click chemistry-mediated cyclic cleavage of metal ion-dependent DNAzymes for amplified and colorimetric detection of human serum copper (II)

Bingying Jiang, Wenjiao Zhou, Yun Xiang, Ruo Yuan, Jiaqing Xie, Daxiu Li


The determination of the level of Cu2+ plays important roles in disease diagnosis and environmental monitoring. By coupling Cu+-catalyzed click chemistry and metal ion-dependent DNAzyme cyclic amplification, we have developed a convenient and sensitive colorimetric sensing method for the detection of Cu2+ in human serums. The target Cu2+ can be reduced by ascorbate to form Cu+, which catalyzes the azide-alkyne cycloaddition between the azide- and alkyne-modified DNAs to form Mg2+-dependent DNAzymes. Subsequently, the Mg2+ ions catalyze the cleavage of the hairpin DNA substrate sequences of the DNAzymes and trigger cyclic generation of a large number of free G-quadruplex sequences, which bind hemin to form the G-quadruplex/hemin artificial peroxidase to cause significant color transition of the sensing solution for sensitive colorimetric detection of Cu2+. This method shows a dynamic range of 5 to 500 nM and a detection limit of 2 nM for Cu2+ detection. Besides, the level of Cu2+ in human serums can also be determined by using this sensing approach. With the advantages of simplicity and high sensitivity, such sensing method thus holds great potential for on-site determination of Cu2+ in different samples.

Graphical abstract

Sensitive colorimetric detection of copper (II) by coupling click chemistry with metal ion-dependentDNAzymes

Publisher URL: https://link.springer.com/article/10.1007/s00216-017-0587-0

DOI: 10.1007/s00216-017-0587-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.