3 years ago

Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles

Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles
Reduced graphene oxide (rGO) is a promising support for electrochemical and environmental applications. However, the role of rGO in dechlorination of chlorinated hydrocarbon by zerovalent iron-based nanoparticles remains unclear. Herein, the rGO-supported bimetallic Fe/Ni nanocomposites were fabricated by chemical reduction method and the microstructures as well as the electrochemical properties of rGO/Fe/Ni, were investigated to elucidate the dechlorination behaviors of trichloroethylene (TCE) under various environmental conditions. Results show that the 10–60 nm Fe/Ni nanoparticles with average particle size of 32 nm are homogeneously dispersed onto the rGO surface. The rGO/Fe/Ni exhibits excellent dechlorination efficiency and rate of TCE is 2.4 times higher than that of free Fe/Ni nanoparticles. Cyclic voltammetric curves and electrochemical impedance spectra indicate that the superior dechlorination activity is attributed to the strong interaction between Fe/Ni and rGO, low internal resistance and rapid diffusion rate of electrons and ions. In addition, the capacitive behavior of rGO can store and transfer 2.7–3.4 electrons produced from Fe0 to the adsorbed TCE more readily, and then converts TCE to non-toxic ethane via hydrodechlorination in the presence of Ni nanoparticles. The rGO/Fe/Ni can be recycled for at least 8 times to effective dechlorinate TCE. Moreover, the reaction rate of TCE dechlorination can be enhanced 1.26–1.49 times when 5–10 mg L−1 humic acid are added. Results obtained in this study have clearly unveiled the role of rGO in hydrodechlorination of TCE and can provide a new insight into the development of rGO−supported bimetallic Fe/Ni nanoparticles for the enhanced removal of chlorinated pollutants in water and wastewater treatment.

Publisher URL: www.sciencedirect.com/science

DOI: S1385894717317266

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.