3 years ago

Ultrasonic Relaxation Spectra for Pyrrolidinium Bis(trifluoromethylsulfonyl)imides: A Comparison with Imidazolium Bis(trifluoromethylsulfonyl)imides

Ultrasonic Relaxation Spectra for Pyrrolidinium Bis(trifluoromethylsulfonyl)imides: A Comparison with Imidazolium Bis(trifluoromethylsulfonyl)imides
Michał Zorębski, Edward Zorębski, Małgorzata Musiał, Marzena Dzida
Ultrasound absorption spectra within the frequency range 10–300 MHz were determined for 1-propyl- and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imides at ambient pressure and at temperatures in the ranges 293.15–313.15 and 293.15–323.15 K, respectively. For both compounds, a single Debye model (relaxation times between 0.451 and 0.778 ns) thoroughly describes the observed ultrasound absorption spectra in the investigated ranges. The spectra resemble those observed for imidazolium-based ionic liquids with the same anion. The ultrasound relaxation is dependent on the alkyl chain length of pyrrolidinium ring. In comparison to adequate imidazolium-based bis(trifluoromethylsulfonyl)imides, the relaxation in pyrrolidinium-based bis(trifluoromethylsulfonyl)imides is stronger; the pyrrolidinium cation causes clearly greater absorption than the imidazolium cation. Also, estimated ultrasound velocity dispersion is stronger in the case of pyrrolidinium imides in comparison to imidazolium imides. In turn, comparison of the ultrasonic data and literature data for the dielectric spectra exemplified for the 1-butyl- side chain in the cation indicates strong coupling in the case of imidazolium ring and weak coupling in the case of pyrrolidinium ring. The effect of absorption on the speed of sound is also discussed.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b07433

DOI: 10.1021/acs.jpcb.7b07433

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.