3 years ago

A metallopeptoid as an efficient bioinspired cooperative catalyst for the aerobic oxidative synthesis of imines

A metallopeptoid as an efficient bioinspired cooperative catalyst for the aerobic oxidative synthesis of imines
Enzymatic catalysis is largely based on intramolecular cooperativity between a metal center and functional organic molecules located on one scaffold. Inspired by this concept we have designed the metallopeptoid trimer BT, which is a unique intramolecular cooperative oxidation catalyst incorporating two catalytic centers, phenanthroline-copper and TEMPO, as well as one non-catalytic benzyl group. Herein we explore the capability of BT to act asan efficient catalyst for the oxidative synthesis of imines, which are versatile intermediates in the fine chemicals and pharmaceutical industries. We demonstrate that BT, combined with CuI, can catalyze the production of benzyl, aryl, heteroaryl, allylic and aliphatic imines from various alcohols and amines with a turn-over-number up to 45 times higher than this achieved when phenanthroline, copper and TEMPO are mixed in solution. Moreover, in low catalyst(s) loading, BT enables transformations that are not possible when a mixture of the individual catalysts is employed.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717303470

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.