3 years ago

Photoluminescent Arrays of Nanopatterned Monolayer MoS2

Photoluminescent Arrays of Nanopatterned Monolayer MoS2
Si Zhou, Xiaochen Wang, Farnaz Niroui, Vladimir Bulović, Wenshuo Xu, Jamie H. Warner, Jeffrey C. Grossman, Kun-Hua Tu, Grace G. D. Han, Caroline A. Ross
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS2 has minimal large-scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain-dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure–PL property correlations of sub-20 nm MoS2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics. Sub-20 nm patterns of monolayer MoS2 nanodots, nanorods, and nanmesh, generated by block copolymer lithography, show novel modulated photoluminescence. Annular dark field scanning transmission electron microscopy provides atomic level insights into the nanostructures, revealing high crystalline quality and features down to 4 nm in size.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703688

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.