5 years ago

How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment?

How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment?
Andreas Köhn, Yuri A. Aoto, Antonio G. S. de Oliveira-Filho, Ana Paula de Lima Batista
With the objective of analyzing which kind of reference data is appropriate for benchmarking quantum chemical approaches for transition metal compounds, we present the following, (a) a collection of 60 transition metal diatomic molecules for which experimentally derived dissociation energies, equilibrium distances, and harmonic vibrational frequencies are known and (b) a composite computational approach based on coupled-cluster theory with basis set extrapolation, inclusion of core–valence correlation, and corrections for relativistic and multireference effects. The latter correction was obtained from internally contracted multireference coupled-cluster (icMRCC) theory. This composite approach has been used to obtain the dissociation energies and spectroscopic constants for the 60 molecules in our data set. In accordance with previous studies on a subset of molecules, we find that multireference corrections are rather small in many cases and CCSD(T) can provide accurate reference values, if the complete basis set limit is explored. In addition, the multireference correction improves the results in cases where CCSD(T) is not a good approximation. For a few cases, however, strong deviations from experiment persist, which cannot be explained by the remaining error in the computational approach. We suggest that these experimentally derived values require careful revision. This also shows that reliable reference values for benchmarking approximate computational methods are not always easily accessible via experiment and accurate computations may provide an alternative way to access them. In order to assess how the choice of reference data affects benchmark studies, we tested 10 DFT functionals for the molecules in the present data set against experimental and calculated reference values. Despite the differences between these two sets of reference values, we found that the ranking of the relative performance of the DFT functionals is nearly independent of the chosen reference.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00688

DOI: 10.1021/acs.jctc.7b00688

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.