4 years ago

Interpolative Separable Density Fitting Decomposition for Accelerating Hybrid Density Functional Calculations with Applications to Defects in Silicon

Interpolative Separable Density Fitting Decomposition for Accelerating Hybrid Density Functional Calculations with Applications to Defects in Silicon
Wei Hu, Lin Lin, Chao Yang
We present a new efficient way to perform hybrid density functional theory (DFT)-based electronic structure calculations. The new method uses an interpolative separable density fitting (ISDF) procedure to construct a set of numerical auxiliary basis vectors and a compact approximation of the matrix consisting of products of occupied orbitals represented in a large basis set such as the planewave basis. Such an approximation allows us to reduce the number of Poisson solves from to when we apply the exchange operator to occupied orbitals in an iterative method for solving the Kohn–Sham equations, where Ne is the number of electrons in the system to be studied. We show that the ISDF procedure can be carried out in operations, with a much smaller preconstant compared to methods used in existing approaches. When combined with the recently developed adaptively compressed exchange (ACE) operator formalism, which reduces the number of times the exchange operator needs to be updated, the resulting ACE-ISDF method significantly reduces the computational cost associated with the exchange operator by nearly 2 orders of magnitude compared to existing approaches for a large silicon system with 1000 atoms. We demonstrate that the ACE-ISDF method can produce accurate energies and forces for insulating and metallic systems and that it is possible to obtain converged hybrid functional calculation results for a 1000-atom bulk silicon within 10 min on 2000 computational cores. We also show that ACE-ISDF can scale to 8192 computational cores for a 4096-atom bulk silicon system. We use the ACE-ISDF method to geometrically optimize a 1000-atom silicon system with a vacancy defect using the HSE06 functional and computes its electronic structure. We find that that the computed energy gap from the HSE06 functional is much closer to the experimental value compared to that produced by semilocal functionals in the DFT calculations.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00807

DOI: 10.1021/acs.jctc.7b00807

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.