3 years ago

Time-Step Targeting Time-Dependent and Dynamical Density Matrix Renormalization Group Algorithms with ab Initio Hamiltonians

Time-Step Targeting Time-Dependent and Dynamical Density Matrix Renormalization Group Algorithms with ab Initio Hamiltonians
Carlos A. Jimenez-Hoyos, Garnet Kin-Lic Chan, Enrico Ronca, Zhendong Li
We study the dynamical density matrix renormalization group (DDMRG) and time-dependent density matrix renormalization group (td-DMRG) algorithms in the ab initio context to compute dynamical correlation functions of correlated systems. We analyze the strengths and weaknesses of the two methods in small model problems and propose two simple improved formulations, DDMRG++ and td-DMRG++, that give increased accuracy at the same bond dimension at a nominal increase in cost. We apply DDMRG++ to obtain the oxygen core-excitation energy in the water molecule in a quadruple-zeta quality basis, which allows us to estimate the remaining correlation error in existing coupled cluster results. Further, we use DDMRG++ to compute the local density of states and gaps and td-DMRG++ to compute the complex polarization function, in linear hydrogen chains with up to 50 H atoms, to study metallicity and delocalization as a function of bond length.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00682

DOI: 10.1021/acs.jctc.7b00682

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.