3 years ago

NMR Investigation about Heterogeneous Structure and Dynamics of Recombinant Spider Silk in the Dry and Hydrated States

NMR Investigation about Heterogeneous Structure and Dynamics of Recombinant Spider Silk in the Dry and Hydrated States
Takehiro K. Sato, Yu Suzuki, Yugo Tasei, Junichi Sugahara, Tetsuo Asakura, Akio Nishimura
Spider silks continue to attract researchers because of their excellent mechanical properties and supercontraction behavior. In this paper, the structure and dynamics of recombinant spider silk protein (RSP) were characterized using 13C CP/MAS, 13C DD/MAS, and 13C refocused-INEPT NMR spectroscopies in the dry and hydrated states. The fractions of several structures of RSP with helical, random coil, and β-sheet polyalanine sequences were determined from the CP/MAS NMR spectra in the dry state. The CP/MAS NMR spectra changed to very simple one with dominant β-sheet Ala peaks by hydration due to a significant loss in CP signals of the other mobile carbons. On the contrary, only sharp mobile peaks, and both mobile and immobile peaks could be observed in the refocused-INEPT and DD/MAS NMR spectra, respectively. The cis/trans proportion of the Gly–Pro bond was also determined. Our measurements provide new insight into understanding the supercontraction phenomenon of spider silks.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01862

DOI: 10.1021/acs.macromol.7b01862

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.