5 years ago

A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides

A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides
Xenia M. M. Weyel, Manuela A. H. Fichte, Alexander Heckel
We synthesized a two-photon-sensitive photocleavable linker based on the 7-diethylaminocoumarin structure and introduced it successfully into DNA strands. First, we demonstrated the inducibility of strand scissions upon irradiation at 365 nm. To verify and visualize the two-photon activity, we used a fluorescence assay based on a DNA strand displacement immobilized in a hydrogel. Additionally, we investigated its use in a new class of DNA decoys that are able to catch and release nuclear factor κB (NF-κB) by using light as an external trigger signal. In cell culture we were able to show the regulation of NF-κB-controlled transcription of green fluorescent protein.

Publisher URL: http://dx.doi.org/10.1021/acschembio.7b00367

DOI: 10.1021/acschembio.7b00367

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.