4 years ago

Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations

A. Charcosset, R. Rincent, L. Moreau


Key message

We propose a criterion to predict genomic selection efficiency for structured populations. This criterion is useful to define optimal calibration set and to estimate prediction reliability for multiparental populations.


Genomic selection refers to the use of genotypic information for predicting the performance of selection candidates. It has been shown that prediction accuracy depends on various parameters including the composition of the calibration set (CS). Assessing the level of accuracy of a given prediction scenario is of highest importance because it can be used to optimize CS sampling before collecting phenotypes, and once the breeding values are predicted it informs the breeders about the reliability of these predictions. Different criteria were proposed to optimize CS sampling in highly diverse panels, which can be useful to screen collections of genotypes. But plant breeders often work on structured material such as biparental or multiparental populations, for which these criteria are less adapted. We derived from the generalized coefficient of determination (CD) theory different criteria to optimize CS sampling and to assess the reliability associated to predictions in structured populations. These criteria were evaluated on two nested association mapping (NAM) populations and two highly diverse panels of maize. They were efficient to sample optimized CS in most situations. They could also estimate at least partly the reliability associated to predictions between NAM families, but they could not estimate differences in the reliability associated to the predictions of NAM families using the highly diverse panels as calibration sets. We illustrated that the CD criteria could be adapted to various prediction scenarios including inter and intra-family predictions, resulting in higher prediction accuracies.

Publisher URL: https://link.springer.com/article/10.1007/s00122-017-2956-7

DOI: 10.1007/s00122-017-2956-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.