3 years ago

Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: Simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts

Dongshuang Lu, Enfeng Wang, Giulia Fulci, Iris Yuwen Zhou, Yang Ji, Jerry S. Cheung, Phillip Zhe Sun, Xiaoan Zhang
Purpose Chemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected CEST (DISC-CEST) analysis for simplified decoupling and quantification of in vivo CEST effects. Methods CEST MRI and relaxation measurements were carried out on a classical 2-pool creatine-gel CEST phantom and normal rat brains (N = 6) and a rat model of glioma (N = 8) at 4.7T. The proposed DISC-CEST quantification was carried out and compared with conventional MTRasym and the original three-offset method. Results We demonstrated that the DISC-CEST contrast in the phantom had much stronger correlation with MTRasym than the three-offset method, which showed substantial underestimation. In normal rat brains, the DISC-CEST approach revealed significantly stronger APT effect in gray matter and higher NOE effect in white matter. Furthermore, the APT and NOE maps derived from DISC-CEST showed significantly higher APT effect in the tumors than contralateral normal tissue but no apparent difference in NOE. Conclusion The proposed DISC-CEST method, by correction of nonlinear direct water saturation effect, serves as a promising alternative to both the commonly used MTRasym and the simplistic three-offset analyses. It provides simple yet reliable in vivo CEST quantification such as APT and NOE mapping in brain tumor, which is promising for clinical translation. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26959

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.