3 years ago

Flow-suppressed hyperpolarized 13C chemical shift imaging using velocity-optimized bipolar gradient in mouse liver tumors at 9.4 T

Chan Gyu Joo, Eunkyung Wang, Eunhae Joe, Hansol Lee, Ho-Taek Song, Jae Eun Song, Joonsung Lee, Dong-Hyun Kim, Seungwook Yang, Young-Suk Choi
Purpose To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized 13C chemical shift imaging (CSI) of mouse liver at 9.4 T. Methods The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated. A free induction decay CSI sequence with alternations between the flow-suppressed and non–flow-suppressed acquisitions for each repetition time was developed and was applied to liver tumor–bearing mice via injection of hyperpolarized [1-13C] pyruvate. Results The in vivo results from flow suppression using the velocity-optimized bipolar gradient were comparable with the simulation results. The vascular signal was adequately suppressed and signal loss in stationary tissue was minimized. Application of the velocity-optimized bipolar gradient to tumor-bearing mice showed reduction in the vessel-derived pyruvate signal contamination, and the average lactate/pyruvate ratio increased by 0.095 (P < 0.05) in the tumor region after flow suppression. Conclusion Optimization of the bipolar gradient is essential because of the short 13C T2* and high signal in venous flow in the mouse liver. The proposed velocity-optimized bipolar gradient can suppress the vascular signal, minimizing T2*-related signal loss in stationary tissues at 9.4 T. Magn Reson Med 78:1674–1682, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26578

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.