3 years ago

Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting

Huihui Ye, Lawrence L. Wald, Yun Jiang, Kawin Setsompop, Dan Ma, Himanshu Bhat, Mark A. Griswold, Stephen F. Cauley
Purpose The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. Methods A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T1 and T2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T1 and T2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. Results The phantom results showed that the simultaneous multislice imaging MRF–FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T1 and T2 values of in vivo brain from the proposed method also matched the results from the normal MRF–FISP acquisition. Conclusion T1 and T2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870–1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26572

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.