5 years ago

The ultimate signal-to-noise ratio in realistic body models

Athanasios G. Polimeridis, Lawrence L. Wald, Elfar Adalsteinsson, Jacob K. White, Jorge F. Villena, Luca Daniel, Bastien Guérin
Purpose We compute the ultimate signal-to-noise ratio (uSNR) and G-factor (uGF) in a realistic head model from 0.5 to 21 Tesla. Methods We excite the head model and a uniform sphere with a large number of electric and magnetic dipoles placed at 3 cm from the object. The resulting electromagnetic fields are computed using an ultrafast volume integral solver, which are used as basis functions for the uSNR and uGF computations. Results Our generalized uSNR calculation shows good convergence in the sphere and the head and is in close agreement with the dyadic Green's function approach in the uniform sphere. In both models, the uSNR versus B0 trend was linear at shallow depths and supralinear at deeper locations. At equivalent positions, the rate of increase of the uSNR with B0 was greater in the sphere than in the head model. The uGFs were lower in the realistic head than in the sphere for acceleration in the anterior-posterior direction, but similar for the left-right direction. Conclusion The uSNR and uGFs are computable in nonuniform body models and provide fundamental performance limits for human imaging with close-fitting MRI array coils. Magn Reson Med 78:1969–1980, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26564

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.