A Systematic Review of Techniques and Sources of Big Data in the Healthcare Sector
Abstract
The main objective of this paper is to present a review of existing researches in the literature, referring to Big Data sources and techniques in health sector and to identify which of these techniques are the most used in the prediction of chronic diseases. Academic databases and systems such as IEEE Xplore, Scopus, PubMed and Science Direct were searched, considering the date of publication from 2006 until the present time. Several search criteria were established as ‘techniques’ OR ‘sources’ AND ‘Big Data’ AND ‘medicine’ OR ‘health’, ‘techniques’ AND ‘Big Data’ AND ‘chronic diseases’, etc. Selecting the paper considered of interest regarding the description of the techniques and sources of Big Data in healthcare. It found a total of 110 articles on techniques and sources of Big Data on health from which only 32 have been identified as relevant work. Many of the articles show the platforms of Big Data, sources, databases used and identify the techniques most used in the prediction of chronic diseases. From the review of the analyzed research articles, it can be noticed that the sources and techniques of Big Data used in the health sector represent a relevant factor in terms of effectiveness, since it allows the application of predictive analysis techniques in tasks such as: identification of patients at risk of reentry or prevention of hospital or chronic diseases infections, obtaining predictive models of quality.
Publisher URL: https://link.springer.com/article/10.1007/s10916-017-0832-2
DOI: 10.1007/s10916-017-0832-2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.