3 years ago

Molecular mechanisms underlying Th1-like Treg generation and function

Margarita Dominguez-Villar, Alexandra Kitz


Since their ‘re-discovery’ more than two decades ago, FOXP3+ regulatory T cells (Tregs) have been an important subject of investigation in the biomedical field and our understanding of the mechanisms that drive their phenotype and function in health and disease has advanced tremendously. During the past few years it has become clear that Tregs are not a terminally differentiated population but show some degree of plasticity, and can, under specific environmental conditions, acquire the phenotype of effector T cells. In particular, recent works have highlighted the acquisition of a Th1-like phenotype by Tregs in several pathological environments. In this review we give an update on the concept of Treg plasticity and the advances in defining the molecular mechanisms that underlie the generation of Th1-like Tregs during an immune response and in different disease settings.

Publisher URL: https://link.springer.com/article/10.1007/s00018-017-2569-y

DOI: 10.1007/s00018-017-2569-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.