4 years ago

Time series analysis based on two-part models for excessive zero count data to detect farm-level outbreaks of swine echinococcosis during meat inspections

Echinococcus multilocularis is a parasite that causes highly pathogenic zoonoses and is maintained in foxes and rodents on Hokkaido Island, Japan. Detection of E. multilocularis infections in swine is epidemiologically important. In Hokkaido, administrative information is provided to swine producers based on the results of meat inspections. However, as the current criteria for providing administrative information often results in delays in providing information to producers, novel criteria are needed. Time series models were developed to monitor autocorrelations between data and lags using data collected from 84 producers at the Higashi-Mokoto Meat Inspection Center between April 2003 and November 2015. The two criteria were quantitatively compared using the sign test for the ability to rapidly detect farm-level outbreaks. Overall, the time series models based on an autoexponentially regressed zero-inflated negative binomial distribution with 60th percentile cumulative distribution function of the model detected outbreaks earlier more frequently than the current criteria (90.5%, 276/305, p< 0.001). Our results show that a two-part model with autoexponential regression can adequately deal with data involving an excessive number of zeros and that the novel criteria overcome disadvantages of the current criteria to provide an earlier indication of increases in the rate of echinococcosis.

Publisher URL: www.sciencedirect.com/science

DOI: S0167587717300041

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.