3 years ago

Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.)

To assess the robustness of the apparent sugar-potassium relationship during ripening of grape berries, a controlled-environment study was conducted on Shiraz vines involving ambient and reduced (by 34%) atmospheric CO2 concentrations, and standard and increased (by 67%) soil potassium applications from prior to the onset of ripening. The leaf net photoassimilation rate was decreased by 35% in the reduced CO2 treatment. The reduction in CO2 delayed the onset of ripening, but at harvest the sugar content of the berry pericarp was similar to that of plants grown in ambient conditions. The potassium content of the berry pericarp in the reduced CO2 treatment was however higher than for the ambient CO2. Berry potassium, sugar and water content were strongly correlated, regardless of treatments, alluding to a ternary link during ripening. Root starch content was lower under reduced CO2 conditions, and therefore likely acted as a source of carbohydrates during berry ripening. Root carbohydrate reserve replenishment could also have been moderated under reduced CO2 at the expense of berry ripening. Given that root potassium concentration was also less in the vines grown in the low CO2 atmosphere, these results point toward whole-plant fine-tuning of carbohydrate and potassium partitioning aimed at optimising fruit ripening.

Publisher URL: www.sciencedirect.com/science

DOI: S0981942817303352

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.