4 years ago

A force-based mechanistic model for describing activated sludge settling process

A force-based mechanistic model for describing activated sludge settling process
Sludge settling as the last step in the biological wastewater treatment process substantially affects the system performance, and thus the design and control optimization of the sludge settling process has been frequently investigated with mathematical modeling tools. So far, these models are developed on the basis of the solid flux theory with numerous parameters and complicated boundary conditions, and their prediction results are often unsatisfactory. In this work, a new force-based mechanical model with five parameters was developed, in which five forces were adopted and Newton's law, rather than the flux theory, was used to describe the sludge settling process. In such a model, the phase interactions were taken into account. New functions of hydrodynamic drag, solids pressure and shear stress were developed. Model validation results demonstrate that both batch and continuous sludge settling processes could be accurately described by this model. The predictions of this model were more accurate than those of flux theory-based models, suggesting its advantages in understanding sludge settling behaviors. In addition, this mechanistic model needed to input 5 parameters and set 1 boundary condition only, and could be directly executed by commercial computational fluid dynamics software. Thus, this force-based model provides a more convenient and useful tool to improve the activated sludge settling design and operation optimization.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417308424

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.