4 years ago

A Machine Learning approach for automatic land cover mapping from DSLR images over the Maltese Islands

High resolution raster data for land cover mapping or change analysis are normally acquired through satellite or aerial imagery. Apart from the incurred costs, the available files might not have the required temporal resolution. Moreover, cloud cover and atmospheric absorptions may limit the applicability of existing algorithms or reduce their accuracy. This paper presents a novel technique that is capable of mapping garrigue and/or phrygana vegetation as well as karst or ground-armour terrain in photos captured by a digital camera. By including a reference pattern in every frame, the automated method estimates the total area covered by each land type. Pixel based classification is performed by supervised decision tree methods. Although the intention is not to replace traditional surface cover analysis, the proposed technique allows accurate land cover mapping with quantitative estimates to be obtained. Since no expensive hardware or specialised personnel are required, vegetation monitoring of local sites can be carried out cheaply and frequently. The developed proof of concept is tested on photos taken in thirteen different sites across the Maltese Islands.

Publisher URL: www.sciencedirect.com/science

DOI: S136481521630487X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.