3 years ago

Increasing habitat complexity on seawalls: Investigating large- and small-scale effects on fish assemblages

Increasing habitat complexity on seawalls: Investigating large- and small-scale effects on fish assemblages
M. Gee Chapman, Ross A. Coleman, Louise B. Firth, Rebecca L. Morris
The construction of artificial structures in the marine environment is increasing globally. Eco-engineering aims to mitigate the negative ecological impacts of built infrastructure through designing structures to be multifunctional, benefiting both humans and nature. To date, the focus of eco-engineering has largely been on benefits for benthic invertebrates and algae. Here, the potential effect of eco-engineered habitats designed for benthic species on fish was investigated. Eco-engineered habitats (“flowerpots”) were added to an intertidal seawall in Sydney Harbour, Australia. Responses of fish assemblages to the added habitats were quantified at two spatial scales; large (among seawalls) and small (within a seawall). Data were collected during high tide using cameras attached to the seawall to observe pelagic and benthic fish. At the larger spatial scale, herbivores, planktivores, and invertebrate predators were generally more abundant at the seawall with the added flowerpots, although results were temporally variable. At the smaller spatial scale, certain benthic species were more abundant around flowerpots than at the adjacent control areas of seawall, although there was no general pattern of differences in species density and trophic group abundance of pelagic fish between areas of the seawall with or without added habitats. Although we did not find consistent, statistically significant findings throughout our study, the field of research to improve fish habitat within human-use constraints is promising and important, although it is in its early stages (it is experimental and requires a lot of trial and error). To advance this field, it is important to document when effects were detected, and when they were not, so that others can refine the designs or scale of habitat enhancements or their study approaches (e.g., sampling protocols). The potential knock-on effect of eco-engineered habitats designed for benthic species on fish was investigated. At the size and spatial scale flowerpots were deployed here, and there were few consistent effects on fish. This study, however, communicates important information on what may and may not be successful for future eco-engineering projects if the target group included (or excluded) fish.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ece3.3475

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.