3 years ago

Recognition of Hyperacetylated N-terminus of H2AZ by TbBDF2 from Trypanosoma brucei.

Wu, Liao, Xu, Tu, Zhang, Yang
Histone modification plays an important role in various biological processes, including gene expression regulation. Bromodomain, as one of histone readers, recognizes specifically the ε-N-lysine acetylation (KAc) of histone. Although the bromodomains and histone acetylation sites of Trypanosoma brucei ( T. brucei ), a lethal parasite responsible for sleeping sickness in human and nagana in cattle, have been identified, how acetylated histones are recognized by bromodomains is still unknown. Here, the bromodomain factor 2 (TbBDF2) from T. brucei was identified to be located in the nucleolus and bind to the hyperacetylated N-terminus of H2AZ which dimerizes with H2BV. The bromodomain of TbBDF2 (TbBDF2-BD) displays a conserved fold that comprises a left-handed bundle of four α-helices (αZ, αA, αB, αC), linked by loop regions of variable length (ZA and BC loops), which form the KAc binding pocket. NMR chemical shift perturbation further revealed that TbBDF2-BD binds to the hyperacetylated N-terminus of H2AZ through its KAc binding pocket. By structure-based virtual screening combining with the ITC experiment, a small molecule compound, GSK2801, was shown to have high affinity to TbBDF2-BD. GSK2801 and the hyperacetylated N-terminus of H2AZ have similar binding sites on TbBDF2-BD. In addition, GSK2801 competitively inhibits the hyperacetylated N-terminus of H2AZ binding to TbBDF2-BD. After treatment of GSK2801, cell growth was inhibited and localization of TbBDF2 was disrupted. Our results report a novel bromodomain-histone recognition by TbBDF2-BD and imply that TbBDF2 may serve as a potential chemotherapeutic target for the treatment of trypanosomiasis.

Publisher URL: http://doi.org/10.1042/BCJ20170619

DOI: 10.1042/BCJ20170619

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.