Transplantation of Isl1 + cardiac progenitor cells in small intestinal submucosa improves infarcted heart function
Abstract
Background
Application of cardiac stem cells combined with biomaterial scaffold is a promising therapeutic strategy for heart repair after myocardial infarction. However, the optimal cell types and biomaterials remain elusive.
Methods
In this study, we seeded Isl1+ embryonic cardiac progenitor cells (CPCs) into decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) to assess the therapeutic potential of Isl1+ CPCs and the biocompatibility of SIS-ECM with these cells.
Results
We observed that SIS-ECM supported the viability and attachment of Isl1+ CPCs. Importantly, Isl1+ CPCs differentiated into cardiomyocytes and endothelial cells 7 days after seeding into SIS-ECM. In addition, SIS-ECM with CPC-derived cardiomyocytes showed spontaneous contraction and responded to β-adrenergic stimulation. Next, patches of SIS-ECM seeded with CPCs for 7 days were transplanted onto the outer surface of infarcted myocardium in mice. Four weeks after transplantation, the patches were tightly attached to the surface of the host myocardium and remained viable. Transplantation of patches improved cardiac function, decreased the left ventricular myocardial scarring area, and reduced fibrosis and heart failure.
Conclusions
Transplantation of Isl1+ CPCs seeded in SIS-ECM represents an effective approach for cell-based heart therapy.
Publisher URL: https://link.springer.com/article/10.1186/s13287-017-0675-2
DOI: 10.1186/s13287-017-0675-2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.