3 years ago

Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.

Belkin, Hubler, Colla, Ilin, Pak, Bezryadin
Electric capacitors are commonly used in electronic circuits for short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately the existing capacitors cannot store a sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine energy storage capabilities of graphene nanocapacitors, which are try-layers involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV/mm (i.e., 1GV/m), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10 to 100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

Publisher URL: http://doi.org/10.1088/1361-6528/aa935c

DOI: 10.1088/1361-6528/aa935c

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.