5 years ago

Landscape-scale assessments of stable carbon isotopes in soil under diverse vegetation classes in East Africa: application of near-infrared spectroscopy

Tor-Gunnar Vågen, Leigh Ann Winowiecki, Jennifer A. J. Dungait, Pascal Boeckx

Abstract

Aims

Stable carbon isotopes are important tracers used to understand ecological food web processes and vegetation shifts over time. However, gaps exist in understanding soil and plant processes that influence δ13C values, particularly across smallholder farming systems in sub-Saharan Africa. This study aimed to develop predictive models for δ13C values in soil using near infrared spectroscopy (NIRS) to increase overall sample size. In addition, this study aimed to assess the δ13C values between five vegetation classes.

Methods

The Land Degradation Surveillance Framework (LDSF) was used to collect a stratified random set of soil samples and to classify vegetation. A total of 154 topsoil and 186 subsoil samples were collected and analyzed using NIRS, organic carbon (OC) and stable carbon isotopes.

Results

Forested plots had the most negative average δ13C values, −26.1‰; followed by woodland, −21.9‰; cropland, −19.0‰; shrubland, −16.5‰; and grassland, −13.9‰. Prediction models were developed for δ13C using partial least squares (PLS) regression and random forest (RF) models. Model performance was acceptable and similar with both models. The root mean square error of prediction (RMSEP) values for the three independent validation runs for δ13C using PLS ranged from 1.91 to 2.03 compared to 1.52 to 1.98 using RF.

Conclusions

This model performance indicates that NIR can be used to predict δ13C in soil, which will allow for landscape-scale assessments to better understand carbon dynamics.

Publisher URL: https://link.springer.com/article/10.1007/s11104-017-3418-3

DOI: 10.1007/s11104-017-3418-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.