3 years ago

Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal

Paul Spence, Alex Sen Gupta, Matthew H. England, Nicola Maher


Interannual to decadal variability in the Pacific Ocean is a prominent feature of Earth’s climate system, with global teleconnections. Recent studies have identified Pacific decadal variability as a major driver of periods of rapid and slower global mean surface air temperature change. Here, we use an eddy-permitting global ocean model to investigate the role of the observed 1992–2011 trade wind intensification and concurrent trends in surface atmospheric variables over the Pacific associated with the negative phase of the Interdecadal Pacific Oscillation (IPO) in driving ocean circulation and heat content changes. We find a strengthening of the Equatorial Undercurrent (EUC) in response to strengthened winds, which brings cooler water to the surface of the eastern Pacific and an increase in the Pacific shallow overturning cells (PSOC), which in turn drives additional heat into the subsurface western Pacific. The wind acceleration also results in an increase in the strength and subsequent heat transport of the Indonesian throughflow (ITF), which transports some of the additional heat from the western Pacific into the Indian Ocean. The circulation changes result in warming of the subsurface western Pacific, cooling of the upper eastern Pacific Ocean and warming of the subsurface Indian Ocean, with an overall increase in Indo-Pacific heat content. Further experiments impose a symmetric reversal of the atmospheric state to examine how the ocean would behave if the winds (and other atmospheric variables) were to revert to their initial state. This mimics a return to the neutral phase of the IPO, characterised by a weakening of the Pacific trade winds. In response we find a slowdown of the EUC and the PSOC, which results in a return to climatological SST conditions in the western and eastern Pacific. The ITF also slows towards its original strength. However, the subsurface temperature, heat content and ITF responses are not symmetric due to an overall increase in the surface heat flux into the ocean associated with the cooler surface of the Pacific. There may also be irreversible heat transport across the thermocline via diapycnal mixing, further contributing to this asymmetry. The net result of the experiment is that the Indo-Pacific subsurface ocean is warmer than it was in its initial state.

Publisher URL: https://link.springer.com/article/10.1007/s00382-017-3923-3

DOI: 10.1007/s00382-017-3923-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.