5 years ago

An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance

Ethylene-Responsive Factors (ERFs) are plant-specific transcription factors (TFs) involved in multiple biological processes, especially in abiotic stress tolerance. However, the ERFs from woody halophytes that are involved in salt stress have been little studied. In the present investigation, we characterized a subfamily member of ERF TFs from Tamarix hispida, ThCRF1, which responds to salt stress. ThCRF1 is a nuclear protein that binds to the motifs including TTG, DRE and GCC-box. Transient transformation was performed to generate T. hispida overexpressing ThCRF1 and RNA interference (RNAi)-silenced ThCRF1 to analyze its function using gain- and loss-of-function methods Overexpression of ThCRF1 in T. hispida significantly improved tolerance to salt-shock-induced stress; by contrast, RNAi-silencing of ThCRF1 significantly decreased tolerance to salt-shock-induced stress. Further experiments showed that ThCRF1 induces the expression of genes including those encoding pyrroline-5-carboxylate synthetase (P5CS), trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), superoxide dismutase (SOD) and peroxidase (POD), which lead to enhanced proline and trehalose levels and increased SOD and POD activities. These results were further confirmed by studying transgenic Arabidopsis plants overexpressing ThCRF1. Therefore, the results suggested that ThCRF1 improves tolerance to salt-shock-induced stress by enhancing trehalose and proline biosynthesis to adjust the osmotic potential, and by improving SOD and POD activities to increase reactive oxygen species scavenging capability.

Publisher URL: www.sciencedirect.com/science

DOI: S0168945217307793

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.