3 years ago

Influence of SiC/Silica and Carbon/Silica Interfaces on the High‐Temperature Creep of Silicon Oxycarbide‐Based Glass Ceramics: A Case Study

Martin Heilmaier, Daniel Schliephake, Tanguy Rouxel, Hans‐Joachim Kleebe, Christina Stabler, Emanuel Ionescu, Ralf Riedel, Masaki Narisawa


In the present study, the high‐temperature creep behavior of three SiOC glass ceramics with different phase compositions are compared by the authors. All three SiOC glass ceramics have a vitreous silica matrix in common, but comprise different homogeneously dispersed phases: 1) only spherical β‐SiC nanoparticles (sample denoted hereafter SiC/SiO2), 2) only high‐aspect ratio sp2‐hybridized carbon (i.e., C/SiO2), and 3) both phases (SiC and segregated carbon, i.e., C/SiC/SiO2). Compression creep experiments are performed at temperatures in the range between 1100 and 1300 °C and true stresses of 50 to 200 MPa. The determined activation energy for creep of the SiOC glass ceramics of around 700 kJ mol−1 is independent of the phase composition. A stress exponent value of approximately 2 indicates an interface‐controlled deformation mechanism. All SiOC glass ceramics exhibit significantly higher creep viscosities than that of vitreous silica. Surprisingly, the spherical β‐SiC nanoparticles have a higher impact on the effective creep viscosities of SiOC as compared to that of the high‐aspect ratio segregated carbon phase. It is concluded that this originates from the β‐SiC/silica and C/silica interfaces, which have different effects on the creep behavior of silicon oxycarbide‐based glass ceramics.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201800596

DOI: 10.1002/adem.201800596

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.