4 years ago

Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate

Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate
This work investigated the influence of a new polymeric blend of polysulfone/polyacrylonitrile (PSf/PAN) nanofibers prepared via the electrospinning process as substrate to produce thin film composite forward osmosis (TFC-FO) membrane. The solvents in the electrospinning process were optimized. A polyamide (PA) thin layer was successfully fabricated on the electrospun nanofibrous substrate via interfacial polymerization. The performance of the nanofiber-based thin film composite (NTFC) membranes was compared with the in-house-made (PSf/PAN) TFC membrane, in which its substrate was fabricated by phase inversion. The NTFC membrane demonstrated significant improvement in hydrophilicity and water permeability, and the reverse salt flux (RSF) was reduced. In addition, the structural parameter (S) value of the fabricated NTFC decreased considerably which represented the reduction of internal concentration polarization (ICP) during the FO process. These achieved results were due to nanofiber structural characteristics such as high porosity and interconnected open pore structure. The effects of different salts as draw solutions (NaCl, KCl, MgCl2, MgSO4) on the osmotic performance of the NTFC and TFC membranes were evaluated. Among the tested draw solutions with the same osmotic pressure, the NTFC membrane exhibited higher water flux (38.3 LMH) than that of the TFC membrane (14.3 LMH) for KCl draw solution.

Publisher URL: www.sciencedirect.com/science

DOI: S0011916417311438

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.