4 years ago

Rapid classification of intact chicken breast fillets by predicting principal component score of quality traits with visible/near-Infrared spectroscopy

In this study visible/near-infrared spectroscopy (Vis/NIRS) was evaluated to rapidly classify intact chicken breast fillets. Five principal components (PC) were extracted from reference quality traits (L, pH, drip loss, expressible fluid, and salt-induced water gain). A quality grades classification method by PC1 score was proposed. With this method, 150 chicken fillets were properly classified into three quality grades, i.e., DFD (dark, firm and dry), normal, and PSE (pale, soft and exudative). Furthermore, PC1 score could be predicted using partial least squares regression (PLSR) model based on Vis/NIRS (R2p = 0.78, RPD = 1.9), without the measurement of any quality traits. Thresholds of PC1 classification method were applied to classify the predicted PC1 score values of each fillet into three quality grades. The classification accuracy of calibration and prediction set were 85% and 80%, respectively. Results revealed that PC1 score classification method is feasible, and with Vis/NIRS, this method could be rapidly implemented.

Publisher URL: www.sciencedirect.com/science

DOI: S0308814617316242

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.