5 years ago

Germanium–Tin/Cadmium Sulfide Core/Shell Nanocrystals with Enhanced Near-Infrared Photoluminescence

Germanium–Tin/Cadmium Sulfide Core/Shell Nanocrystals with Enhanced Near-Infrared Photoluminescence
Javier Vela, Jacob W. Petrich, Ujjal Bhattacharjee, Long Men, Brett W. Boote, Emily A. Smith, Himashi P. Andaraarachchi
Ge1–xSnx alloy nanocrystals and Ge1–xSnx/CdS core/shell nanocrystals were prepared via solution phase synthesis, and their size, composition, and optical properties were characterized. The diameter of the nanocrystal samples ranged from 6 to 13 nm. The crystal structure of the Ge1–xSnx materials was consistent with a cubic diamond phase, while the CdS shell was consistent with the zinc blende polytype. Inclusion of Sn alone does not result in enhanced photoluminescence intensity; however, adding an epitaxial CdS shell onto the Ge1–xSnx nanocrystals does enhance the photoluminescence up to 15-fold versus that of Ge/CdS nanocrystals with a pure Ge core. More effective passivation of surface defects, and a consequent decrease in the level of surface oxidation, by the CdS shell as a result of improved epitaxy (smaller lattice mismatch) is the most likely explanation for the increased photoluminescence observed for the Ge1–xSnx/CdS materials. With enhanced photoluminescence in the near-infrared region, Ge1–xSnx core/shell nanocrystals might be useful alternatives to other materials for energy capture and conversion applications and as imaging probes.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01815

DOI: 10.1021/acs.chemmater.7b01815

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.