4 years ago

Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator

Yuta Nakashoji, Yuki Murata, Masaki Kondo, Masahiko Hashimoto, Yugo Tanaka
We previously developed a technique that enabled automatic creation of monodisperse water-in-oil droplets with the use of an air-evacuated PDMS microfluidic device. Although the device generated droplets over a long-time period, the production rate was slow (∼10 droplets per second). In the current study, we aimed to improve this rate, using the same fluid pumping principle described in our previous work, by remodeling our device configuration. To achieve this aim, we developed a new device with a much larger PDMS surface area-to-volume ratio within the air-trapping void space (178 cm–1), than that of our earlier device (5.0 cm–1). This design approach was based on the idea that a larger PDMS surface area-to-volume ratio was likely to create a higher vacuum inside the void space, thereby contributing to faster liquid flow and an increased droplet generation rate. The new device consisting of five layers featuring a degassed PDMS slab as a detachable liquid-suction actuator, which was stacked on a lower microfluidic layer. In this device, the rate of droplet production increased during the time-course droplet formation and reached ca. 470 droplets per second immediately before completely consuming the loaded aqueous solution (20 μL).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elps.201700247

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.