3 years ago

Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems

Qianru Wang, Naga Neehar Dingari, Cullen R. Buie
Insulator-based dielectrophoresis (iDEP) has emerged as a powerful tool for multiple biomicrofluidic operations, such as cell separation and concentration. The key feature for iDEP systems is the alteration of insulating microchannel geometries to create strong electric field gradients. Under AC electric fields, this strong electric field gradient can affect fluid flow by (at least) two nonlinear electrokinetic phenomena; (a) electrothermal flow due to Joule heating and (b) induced charge electroosmosis (ICEO) near the microchannel constrictions of small (but finite) permittivity and conductivity. This paper presents an experimental and theoretical study on the interplay of electrothermal and ICEO flows near microchannel constrictions with various geometries and fluid ionic strengths, which are crucial design factors for iDEP systems. Temperature rise and fluid velocities in 2D Gaussian-shaped constrictions were studied experimentally with supporting analytical estimations and numerical simulations. Additionally, we show qualitatively distinct recirculating flow patterns in 2D and 3D microchannel constrictions used for iDEP systems. Approximate analytical expressions for electrothermal and ICEO velocity scales are provided as a function of constriction geometry, bulk electrolyte concentration, and the applied electric field. Insights from this study will be useful in designing microfluidic systems for electrokinetic particle manipulation.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elps.201700144

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.