3 years ago

Electroosmotic Flow Dispersion of Large Molecules in Electrokinetic Migration

Electroosmotic Flow Dispersion of Large Molecules in Electrokinetic Migration
David D. Y. Chen, Akram Khodabandehloo
It is a common knowledge that large molecules have small diffusion coefficients. Therefore, it was thought that these molecules should generate very narrow peaks in electropherograms, because longitudinal diffusion was thought to be the only factor that contributes to band broadening in electrophoretic separation systems in capillaries and microfluidics. However, it is also common to observe that large molecules such as proteins and polymers often produce wider peaks than most small molecules. It is demonstrated in this work that dispersion of analytes during electrokinetic migration is also the results of Taylor dispersion. Similar to conventional Taylor dispersion, peak broadening is more pronounced for particles with smaller diffusion coefficients. The theoretical description of band broadening caused by electroosmotic flow dispersion (EOFD) and the experimental verification of this phenomenon are presented in this paper. The dispersion of various sized molecules, from small peptides to large proteins, in capillary electrophoresis is used as examples in this study.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01592

DOI: 10.1021/acs.analchem.7b01592

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.