3 years ago

Core/shell microcapsules consisting of Fe 3 O 4 microparticles coated with nitrogen-doped mesoporous carbon for voltammetric sensing of hydrogen peroxide

Li Zhang, Ying Wang, Li Lin, Zuojia Qin, Hui Chen, Yu Zhao, Yunsong Zhang, Guangtu Wang, Ping Zou


The authors describe the preparation of core/shell composites consisting of Fe3O4 microparticles coated with nitrogen-doped mesoporous carbon. Synthesis was accomplished by simultaneous reduction of template α-Fe2O3 and pyrolysis of a nitrogen-containing poly(ionic liquids). The mesoporous composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry and adsorption/desorption isotherms. The characterizations prove successful formation of an Fe3O4 core and an outer shell (coating) consisting of nitrogen-doped mesoporous carbon. The material was placed on a glassy carbon electrode and synergistic catalytic effect of of N-doping, the mesoporous, core/shell structure and two types of active sites properties between Fe3O4 core and nitrogen-doped mesoporous carbon shell is shown to result in superior electrochemical activity towards the reduction of hydrogen peroxide. Figures of merit include (a) a sensitivity of 77.1 μA mM−1 cm−2; (b) a linear response over the 50 μM to 33 mM H2O2 concentration range, (c) a 5.9 μM detection limit of (at an S/N ratio of 3), and (d) a low working voltage of −0.4 V (vs. saturated calomel electrode) which makes the method more selective.

Graphical abstract

Electrochemical method for H2O2 detection based on Fe3O4@nitrogen-doped mesoporous carbon microcapsules core/shell composites (Fe3O4@NMCMs), prepared by the polymerization of the ionic liquids (1-Allyl-3-ethylimidazolium tetrafluoroborate, [AEIm]BF4) monomer (PILs) on the surface of α-Fe2O3 nano-peanuts and then pyrolysis.

Publisher URL: https://link.springer.com/article/10.1007/s00604-017-2497-4

DOI: 10.1007/s00604-017-2497-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.