3 years ago

Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC

In this research, a novel insoluble sorbent based on cyclodextrin and rigid aromatic groups tetrafluoroacetonitrile was designed for dispersive insoluble solid-phase extraction (DSPE). Due to its high adsorption capacity, this obtained polymer was applied to separation and concentration of trace quinolones in wastewater before HPLC determination. Various parameters influencing the extraction performance were studied and optimized. A DSPE approach coupled with high performance liquid chromatography was developed for the determination of four quinolones in wastewater samples. The limit of quantitation of fleroxacin, ciprofloxacin, gatifloxacin, norfloxacin were 2.67, 3.17, 4.75, 5.50ngmL−1, respectively. The recoveries of four quinolones range from 96.43 to 103.3% with relative standard deviations less than 4.5%. These results demonstrated that the proposed approach based on CDP was efficient, low-cost for extraction of quinolones from wastewater.

Publisher URL: www.sciencedirect.com/science

DOI: S1570023217316975

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.