4 years ago

Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection

Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection
In this paper, multifunction nanoparticles (MNPs), Fe3O4@SiO2@Au MNPs, with properties of superparamagnetism, fluorescence and peroxidase-like catalytic activity were synthesized in the aqueous phase. The synthesized composites were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier translation infrared spectrum (FT-IR) and fluorometer. The results show that the multifunctional nanomaterials have good magnetic and fluorescence properties. Then, the mimetic properties of this material were investigated. The as-synthesized Fe3O4@SiO2@Au MNPs exhibited the best catalytic activity for peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) at the reaction temperature of 70 °C and pH of 3. Compared with free Fe3O4 MNPs and BSA-Au nanoclusters (NCs), the composites have better catalytic activity at higher temperature and lower pH, indicating that Fe3O4@SiO2@Au MNPs can work in more severe environment. In practical application, we have successfully established the colorimetric method for the detection of H2O2 and glucose with the detection range of 1 × 10−6 ∼ 4 × 10−5 M and 5 × 10−6 ∼ 3.5 × 10−4 M, and the detection limit of 6 × 10−7 M and 3.5 × 10−6 M, respectively. The method was also successfully applied in the detection of real samples. Furthermore, since the fluorescence of Fe3O4@SiO2@Au MNPs was quenched by H2O2, a method for the visual detection of glucose was established.

Publisher URL: www.sciencedirect.com/science

DOI: S000326971730372X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.