4 years ago

Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture

Automated cell-based high-throughput screening (HTS) is a powerful tool in drug discovery, and it is increasingly being recognized that three-dimensional (3D) models, which more closely mimic in vivo-like conditions, are desirable screening platforms. One limitation hampering the development of 3D HTS is the lack of suitable 3D culture scaffolds that can readily be incorporated into existing HTS infrastructure. We now show that β-hairpin peptide hydrogels can serve as a 3D cell culture platform that is compatible with HTS. MAX8 β-hairpin peptides can physically assemble into a hydrogel with defined porosity, permeability and mechanical stability with encapsulated cells. Most importantly, the hydrogels can then be injected under shear-flow and immediately reheal into a hydrogel with the same properties exhibited prior to injection. The post-injection hydrogels are cell culture compatible at physiological conditions. Using standard HTS equipment and medulloblastoma pediatric brain tumor cells as a model system, we show that automatic distribution of cell-peptide mixtures into 384-well assay plates results in evenly dispensed, viable MAX8-cell constructs suitable for commercially available cell viability assays. Since MAX8 peptides can be functionalized to mimic the microenvironment of cells from a variety of origins, MAX8 peptide gels should have broad applicability for 3D HTS drug discovery.

Publisher URL: www.sciencedirect.com/science

DOI: S0003269717303184

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.