3 years ago

Electron Hopping Between Fe 3 d States in Ethynylferrocene-doped Poly(Methyl Methacrylate)-poly(Decyl Methacrylate) Copolymer Membranes

Electron Hopping Between Fe 3 d States in Ethynylferrocene-doped Poly(Methyl Methacrylate)-poly(Decyl Methacrylate) Copolymer Membranes
Roland De Marco, Eric Bakker, Zdenka Jarolímová, Gaston A. Crespo, Maria Cuartero, Robert G. Acres
Synchrotron radiation-valence band spectroscopy (SR-VBS) has been utilized in a study of redox molecule valence states implicated in the electron hopping mechanism of ethynylferrocene in unplasticized poly(methyl methacrylate)-poly(decyl methacrylate) [PMMA-PDMA] membranes. In this communication, it is revealed that, at high concentrations of ethynylferrocene, there are observable Fe 3d valence states that are likely linked to electron hopping between ferrocene moieties of neighbouring redox molecules. Furthermore, electrochemically induced stratification of ethynylferrocene in an oxidized PMMA-PDMA membrane produces a gradient of Fe 3d states toward the buried interface at the glassy carbon/PMMA-PDMA membrane enabling electron hopping and electrochemical reactivity of dissolved ethynylferrocene across this buried film.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elan.201700510

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.