4 years ago

Electro-Oxidation of Methanol and Ethanol Catalyzed by Pt/ZSM-5/C

Electro-Oxidation of Methanol and Ethanol Catalyzed by Pt/ZSM-5/C
Susanta Ghosh, Basu Maan Daas
Direct alcohol fuel cells are a promising source of future energy generation for small and portable devices. Platinum is considered the best catalyst for electro-oxidation of alcohols in fuel cells but the major hurdles with platinum catalysts are high cost of platinum as well as low selectivity, slow reaction kinetics and carbonaceous poisoning associated with platinum. This particular research reports electro-oxidation of methanol and ethanol over platinum electrodeposited on ZSM-5 without any carbon additive. From the cyclic voltammetry and chronoamperometry, linear sweep voltammetry, tafel plot and multiple scan analyses, it is found that Pt/ZSM-5/C electrodes can catalyze electro-oxidation of methanol and ethanol with higher efficiency. ZSM-5 supports the formation of smaller sized platinum nanoparticles in a dispersed manner on the zeolite support and thus increases the active surface area of the metal for catalytic activity. It favors adsorption of alcohol molecules on the modified electrode surface and thus increases the diffusion process. It also stabilizes the modified electrodes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elan.201700235

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.