3 years ago

Electrochemical Determination of Label Free BRCA Hybridization by Single Use Antioxidant Modified Electrode

Electrochemical Determination of Label Free BRCA Hybridization by Single Use Antioxidant Modified Electrode
Mihrican Muti, Merve Muti
A novel DNA probe based on caffeic acid modified disposable pencil graphite electrodes were developed for the first time for the electrochemical determination of breast cancer gene sequence (BRCA) hybridization. Amino-linked BRCA probe highly immobilized onto the caffeic acid modified electrode by means of the interaction between the amino group of BRCA probe and the carboxyl group of caffeic acid compared to the bare electrode. 44 % signal enhancement in guanine oxidation signal was measured by caffeic acid modified electrode. Besides, these probes exhibited high selectivity towards its complementary DNA sequences (target). Hybridization between probe and target (BRCA1) was studied to evaluate the selectivity of the probes for complementary, non-complementary and mismatch sequences. The selectivity was also tested in the presence of mixture containing the target and one base mismatch BRCA sequences in the same ratio (1 : 1). It can be said this probe can select its complementary from the mixture.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elan.201700256

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.