3 years ago

Highly Sensitive Dopamine Detection Using a Bespoke Functionalised Carbon Nanotube Microelectrode Array

Highly Sensitive Dopamine Detection Using a Bespoke Functionalised Carbon Nanotube Microelectrode Array
S. Ravi P. Silva, Steven Hinder, Ying Chen, James Clark
Understanding how the brain works requires developing advanced tools that allow measurement of bioelectrical and biochemical signals, including how they propagate between neurons. The introduction of nanomaterials as electrode materials has improved the impedance and sensitivity of microelectrode arrays (MEAs), allowing high quality recordings of single cells in situ using electrode diameters of ≤20 μm. MEAs also have the potential to measure electroactive biological molecules in situ, such as dopamine, a neurotransmitter in the nervous system. Thus, this work focused on fabricating a functionalised carbon nanotube (CNT)-based MEA to demonstrate its potential for future measurement of small signals generated from excitable cells. To this end, the functionalised CNT MEA has recorded one of the lowest electrochemical interfacial impedances available in the literature, 2.8±0.2 kΩ, for an electrode of its geometric surface area. Electrochemical detection of dopamine revealed again one of the best sensitivity values per area available in the literature, 9.48 μA μM−1 mm−2. Additionally, a limit of detection of 7 nM was recorded for dopamine using the functionalised CNT MEA, with selectivity against common electrochemical interferents such as ascorbic acid. These results indicate improvement beyond currently available MEAs, along with the feasibility of using these devices for multi-site detection of physiologically relevant electroactive biomolecules.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elan.201700248

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.