5 years ago

Measuring Nano- to Microstructures from Relayed Dynamic Nuclear Polarization NMR

Measuring Nano- to Microstructures from Relayed Dynamic Nuclear Polarization NMR
Moreno Lelli, Arthur C. Pinon, Tran Pham, Etienne Socie, Pierrick Berruyer, Lyndon Emsley, Anne Lesage, Aaron J. Rossini, Staffan Schantz, Judith Schlagnitweit, Mingxue Tang
We show how dynamic nuclear polarization (DNP) NMR can be used in combination with models for polarization dynamics to determine the domain sizes in complex materials. By selectively doping a source component with radicals and leaving the target undoped, we can measure experimental polarization buildup curves which can be compared with simulations based on heterogeneous distributions of polarization within the sample. The variation of the integrated DNP enhancement as a function of the polarization time is found to be characteristic of the geometry. We demonstrate the method experimentally on four different systems where we successfully determine domain sizes between 200 and 20 000 nm, specifically in powdered histidine hydrochloride monohydrate, pore lengths of mesoporous silica materials, and two domain sizes in two-component polymer film coatings. Additionally, we find that even in the apparently homogeneous frozen solutions used as polarization sources in most DNP experiments, polarization is relayed from protons near the radicals to the bulk of the solution by spin diffusion, which explains the experimentally observed buildup times in these samples.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04438

DOI: 10.1021/acs.jpcc.7b04438

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.