3 years ago

High-performance IP lookup using Intel Xeon Phi: a Bloom filters based approach

Alexandre Lucchesi, André C. Drummond, George Teodoro

Abstract

IP lookup is a core operation in packet forwarding, which is implemented using a Longest Prefix Matching (LPM) algorithm to find the next hop for an input address. This work proposes and evaluates the use of parallel processors to deploy an optimized IP lookup algorithm based on Bloom filters. We target the implementation on the Intel Xeon Phi (Intel Phi) many-core coprocessor and on multi-core CPUs, and also evaluate the cooperative execution using both computing devices with several optimizations. The experimental evaluation shows that we were able to attain high IP lookup throughputs of up to 182.7 Mlps (Million packets per second) for IPv6 packets on a single Intel Phi. This performance indicates that the Intel Phi is a very promising platform for deployment of IP lookup. We also compared the Bloom filters to an efficient approach based on the Multi-Index Hybrid Trie (MIHT) in which the Bloom filters was up to 5.1 × faster. We also propose and evaluate the cooperative use of CPU and Intel Phi in the IP lookup, which resulted in an improvement of about 1.3 × as compared to the execution using only the Intel Phi.

Publisher URL: https://link.springer.com/article/10.1186/s13174-017-0075-y

DOI: 10.1186/s13174-017-0075-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.